Distilling Knowledge Using Parallel Data for Far-field Speech Recognition

نویسندگان

  • Jiangyan Yi
  • Jianhua Tao
  • Zhengqi Wen
  • Bin Liu
چکیده

In order to improve the performance for far-field speech recognition, this paper proposes to distill knowledge from the close-talking model to the far-field model using parallel data. The close-talking model is called the teacher model. The farfield model is called the student model. The student model is trained to imitate the output distributions of the teacher model. This constraint can be realized by minimizing the KullbackLeibler (KL) divergence between the output distribution of the student model and the teacher model. Experimental results on AMI corpus show that the best student model achieves up to 4.7% absolute word error rate (WER) reduction when compared with the conventionally-trained baseline models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه

Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...

متن کامل

Far-Field ASR Without Parallel Data

In far-field speech recognition systems, training acoustic models with alignments generated from parallel close-talk microphone data provides significant improvements. However it is not practical to assume the availability of large corpora of parallel close-talk microphone data, for training. In this paper we explore methods to reduce the performance gap between far-field ASR systems trained wi...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.06941  شماره 

صفحات  -

تاریخ انتشار 2018